Package: SEset 1.0.1

Oisín Ryan

SEset: Computing Statistically-Equivalent Path Models

Tools to compute and analyze the set of statistically-equivalent (Gaussian, linear) path models which generate the input precision or (partial) correlation matrix. This procedure is useful for understanding how statistical network models such as the Gaussian Graphical Model (GGM) perform as causal discovery tools. The statistical-equivalence set of a given GGM expresses the uncertainty we have about the sign, size and direction of directed relationships based on the weights matrix of the GGM alone. The derivation of the equivalence set and its use for understanding GGMs as causal discovery tools is described by Ryan, O., Bringmann, L.F., & Schuurman, N.K. (2022) <doi:10.31234/osf.io/ryg69>.

Authors:Oisín Ryan

SEset_1.0.1.tar.gz
SEset_1.0.1.zip(r-4.5)SEset_1.0.1.zip(r-4.4)SEset_1.0.1.zip(r-4.3)
SEset_1.0.1.tgz(r-4.4-any)SEset_1.0.1.tgz(r-4.3-any)
SEset_1.0.1.tar.gz(r-4.5-noble)SEset_1.0.1.tar.gz(r-4.4-noble)
SEset_1.0.1.tgz(r-4.4-emscripten)SEset_1.0.1.tgz(r-4.3-emscripten)
SEset.pdf |SEset.html
SEset/json (API)

# Install 'SEset' in R:
install.packages('SEset', repos = c('https://ryanoisin.r-universe.dev', 'https://cloud.r-project.org'))

Peer review:

Bug tracker:https://github.com/ryanoisin/seset/issues

Datasets:
  • riskcor - Cognitive risk sample correlation matrix

On CRAN:

3.00 score 2 stars 2 scripts 167 downloads 11 exports 5 dependencies

Last updated 2 years agofrom:3d93eb9c32. Checks:OK: 1 NOTE: 6. Indexed: yes.

TargetResultDate
Doc / VignettesOKNov 09 2024
R-4.5-winNOTENov 09 2024
R-4.5-linuxNOTENov 09 2024
R-4.4-winNOTENov 09 2024
R-4.4-macNOTENov 09 2024
R-4.3-winNOTENov 09 2024
R-4.3-macNOTENov 09 2024

Exports:cov_to_pathfind_parentsget_psinetwork_to_pathnetwork_to_SEsetorder_genpath_to_networkpropcalr2_distributionreorder_matSEset_to_network

Dependencies:combinatlatticeMatrixrbibutilsRdpack